首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48553篇
  免费   7745篇
  国内免费   5267篇
化学   34288篇
晶体学   488篇
力学   2926篇
综合类   370篇
数学   6023篇
物理学   17470篇
  2024年   42篇
  2023年   1004篇
  2022年   982篇
  2021年   1504篇
  2020年   1945篇
  2019年   1793篇
  2018年   1521篇
  2017年   1350篇
  2016年   2154篇
  2015年   2124篇
  2014年   2656篇
  2013年   3459篇
  2012年   4349篇
  2011年   4363篇
  2010年   3038篇
  2009年   2774篇
  2008年   3051篇
  2007年   2779篇
  2006年   2561篇
  2005年   2216篇
  2004年   1792篇
  2003年   1429篇
  2002年   1357篇
  2001年   1106篇
  2000年   923篇
  1999年   1034篇
  1998年   910篇
  1997年   819篇
  1996年   908篇
  1995年   789篇
  1994年   730篇
  1993年   623篇
  1992年   572篇
  1991年   480篇
  1990年   407篇
  1989年   323篇
  1988年   279篇
  1987年   239篇
  1986年   169篇
  1985年   198篇
  1984年   173篇
  1983年   137篇
  1982年   99篇
  1981年   71篇
  1980年   59篇
  1979年   34篇
  1978年   29篇
  1976年   29篇
  1975年   31篇
  1974年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The Fe-based transition metal oxides are promising anode candidates for lithium storage considering their high specific capacity, low cost, and environmental compatibility. However, the poor electron/ion conductivity and significant volume stress limit their cycle and rate performances. Furthermore, the phenomena of capacity rise and sudden decay for α-Fe2O3 have appeared in most reports. Here, a uniform micro/nano α-Fe2O3 nanoaggregate conformably enclosed in an ultrathin N-doped carbon network (denoted as M/N-α-Fe2O3@NC) is designed. The M/N porous balls combine the merits of secondary nanoparticles to shorten the Li+ transportation pathways as well as alleviating volume expansion, and primary microballs to stabilize the electrode/electrolyte interface. Furthermore, the ultrathin carbon shell favors fast electron transfer and protects the electrode from electrolyte corrosion. Therefore, the M/N-α-Fe2O3@NC electrode delivers an excellent reversible capacity of 901 mA h g−1 with capacity retention up to 94.0 % after 200 cycles at 0.2 A g−1. Notably, the capacity rise does not happen during cycling. Moreover, the lithium storage mechanism is elucidated by ex situ XRD and HRTEM experiments. It is verified that the reversible phase transformation of α↔γ occurs during the first cycle, whereas only the α-Fe2O3 phase is reversibly transformed during subsequent cycles. This study offers a simple and scalable strategy for the practical application of high-performance Fe2O3 electrodes.  相似文献   
102.
The complex-scaled Green's function(CGF)method is employed to explore the single-proton resonance in 15F.Special attention is paid to the first excited resonant state 5/2+,which has been widely studied in both theory and experiments.However,past studies generally overestimated the width of the 5/2+state.The predicted energy and width of the first excited resonant state 5/2+by the CGF method are both in good agreement with the experimental value and close to Fortune's new estimation.Furthermore,the influence of the potential parameters and quadruple deformation effects on the resonant states are investigated in detail,which is helpful to the study of the shell structure evolution.  相似文献   
103.
104.
Semiconductors grown by the solution-processed method have shown low-cost,facile fabrication process and comparable performance.However,there are many reasons why it is difficult to achieve high quality films.For example,lattice constant mismatch is one of the problems when photovoltaic devices made of organ metallic perovskites.In this work,MAPbBrMA=CH3NH3^+perovskites single crystals grown on the surface of MAPbBr2.5 CI0.5 perovskites single crystals via liquid epitaxial growth method is demonstrated.It is found that when the lattice constants of the two perovskite single crystals are matched,another crystal can be grown on the surface of one crystal by epitaxial growth.The whole epitaxy growth process does not require high heating temperature and long heating time.X-ray diffraction method is used to prove the lattice plane of the substrate and the epitaxial grown layer.A scanning electron microscope is used to measure the thickness of the epitaxial layer.Compared with perovskite-based photodetectors without epitaxial growth layer,perovskite-based photodetectors with epitaxial growth layer have lower dark current density and higher optical responsibility.  相似文献   
105.
Tunneled metal oxides such as α-Mn8O16 (hollandite) have proven to be compelling candidates for charge-storage materials in high-density batteries. In particular, the tunnels can support one-dimensional chains of K+ ions (which act as structure-stabilizing dopants) and H2O molecules, as these chains are favored by strong H-bonds and electrostatic interactions. In this work, we examine the role of water molecules in enhancing the stability of K+-doped α-Mn8O16 (cryptomelane). The combined experimental and theoretical analyses show that for high enough concentrations of water and tunnel-ions, H2O displaces K+ ions from their natural binding sites. This displacement becomes energetically favorable due to the formation of K2+ dimers, thereby modifying the stoichiometric charge of the system. These findings have potentially significant technological implications for the consideration of cryptomelane as a Li+/Na+ battery electrode. Our work establishes the functional role of water in altering the energetics and structural properties of cryptomelane, an observation that has frequently been overlooked in previous studies.

Water displaces potassium ions and initiates the formation of a homonuclear dimer ion (K2+) in the tunnels of hollandite.  相似文献   
106.
Propagation dynamics of the cosh-Airy vortex(CAiV) beams in a chiral medium is investigated analytically with Huygens–Fresnel diffraction integral formula. The results show that the CAiV beams are split into the left circularly polarized vortex(LCPV) beams and the right circularly polarized vortex(RCPV) beams with different propagation trajectories in the chiral medium. We mainly investigate the effect of the cosh parameter on the propagation process of the CAiV beams.The propagation characteristics, including intensity distribution, propagation trajectory, peak intensity, main lobe's intensity, Poynting vector, and angular momentum are discussed in detail. We find that the cosh parameter affects the intensity distribution of the CAiV beams but not its propagation trajectory. As the cosh parameter increases, the distribution areas of the LCPV and RCPV beams become wider, and the side lobe's intensity and peak intensity become larger. Besides, the main lobe's intensity of the LCPV and RCPV beams increase with the increase of the cosh parameter at a farther propagation distance, which is confirmed by the variation trend of the Poynting vector. It is significant that we can vary the cosh parameter to control the intensity distribution, main lobe's intensity, and peak intensity of the CAiV beams without changing the propagation trajectory. Our results may provide some support for applications of the CAiV beams in optical micromanipulation.  相似文献   
107.
Shi  D.  Feng  J.  Wang  J.  Zhao  W.  Li  X. 《Kinetics and Catalysis》2020,61(5):750-757
Kinetics and Catalysis - A series of Cu-SSZ-13@CeO2 catalysts with surface modification with CeO2 was prepared by the modified self-resemble method based on the one-pot synthesized Cu-SSZ-13...  相似文献   
108.
Based on the surface passivation of n-type silicon in a silicon drift detector(SDD), we propose a new passivation structure of SiO2/Al2O3/SiO2 passivation stacks. Since the SiO2 formed by the nitric-acid-oxidation-of-silicon(NAOS)method has good compactness and simple process, the first layer film is formed by the NAOS method. The Al2O3 film is also introduced into the passivation stacks owing to exceptional advantages such as good interface characteristic and simple process. In addition, for requirements of thickness and deposition temperature, the third layer of the SiO2 film is deposited by plasma enhanced chemical vapor deposition(PECVD). The deposition of the SiO2 film by PECVD is a low-temperature process and has a high deposition rate, which causes little damage to the device and makes the SiO2 film very suitable for serving as the third passivation layer. The passivation approach of stacks can saturate dangling bonds at the interface between stacks and the silicon substrate, and provide positive charge to optimize the field passivation of the n-type substrate.The passivation method ultimately achieves a good combination of chemical and field passivations. Experimental results show that with the passivation structure of SiO2/Al2O3/SiO2, the final minority carrier lifetime reaches 5223 μs at injection of 5×1015 cm-3. When it is applied to the passivation of SDD, the leakage current is reduced to the order of nA.  相似文献   
109.
One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号